Rounding and Percent Error

rounding off to significant figures

To round off to n significant figures, we look at the $(n+1)$ th digit.

- If it is $0,1,2,3$ or 4 we do not change the nth digit.
- If it is $5,6,7,8$ or 9 we increase the nth digit by 1 .

We delete all digits after the nth digit, replacing by 0 s if necessary

```
Example 13 CO) Self Tutor
Round: a }7.182\mathrm{ to }2\mathrm{ significant figures b 0.00132 to 2 significant figure d 4.057 to 3 significan figues.
    a 7.182\approx7.2 (2 s.f.)
        This is the 2nd significant figure, so we look at the next digit which is }8\mathrm{ .
        The 8 tells us to round the 1 up to a 2 and leave off the remaining digits.
    0.00132\approx0.0013 (2 s.f)
        These zeros at the front are place holders and so must stay. The first significant figure is the
        1. The third significant figure, 2, tells us to leave the 3 as it is and leave off the remaining
        digits.
```

2 Write correct to 3 significant figures:
a 43620
b 10076
c $0 . \overline{6}$
d 0.036821
e 0.3186
j 256800

3 Write correct to 4 significant figures:
a 28.0392
b 0.005362
c 23683.9
d 42366709
e 0.038792
f 0.0063779
g 0.0008999
h 43.076321

Percentage error $E=\frac{\left|V_{A}-V_{E}\right|}{V_{E}} \times 100 \%$

Example 20

You estimate a fence's length to be 70 m whereas its true length is 78.3 m Find, correct to one decimal place:
a the error
b the percentage error

$$
\text { a } \begin{aligned}
\text { error } & =V_{A}-V_{E} \\
& =70-78.3 \\
& =-8.3 \mathrm{~m}
\end{aligned}
$$

6 percentage error
$=\frac{\left|V_{A}-V_{E}\right|}{V_{E}} \times 100 \%$
$=\frac{|-8.3|}{78.3} \times 100 \%$
$\approx 10.6 \%$

1 Find it the error ii the percentage error in rounding:
a the yearly profit of $€ 1367540$ made by a company to $€ 1.37$ million
b a population of 31467 people to 31000 people
c a retail sales figure of $\$ 458110$ to $\$ 460000$
d the number of new cars sold by a company in a year from 2811 to 3000 .
2 Find it the error ii the percentage error if you estimate:
a the mass of a brick to be 5 kg when its actual mass is 6.238 kg
b the perimeter of a property to be 100 m when its actual length is 97.6 m
c the capacity of a container to be 20 L when its actual capacity is 23.8 L
d the time to write a computer program to be 50 hours when it actually takes 72 hours.

Linear Equations

Two unknowns mean two equations. Write two equations and solve using PlySmlt.

Example 25

(4) Self Tutor

Two adults' tickets and three children's tickets to a baseball match cost $\$ 45$, while three adults' and four children's tickets cost $\$ 64$. Find the cost of each type of ticket.

Let $\$ x$ be the cost of an adult's ticket and $\$ y$ be the cost of a child's ticket.
So, $2 x+3 y=45$ and $3 x+4 y=64$

Quadratics
Factorised Form $y=a(x-\alpha)(x-\beta)$
α and β are the x-intercepts
Y-intercept $=a(\alpha)(\beta)$
Vertex: $x=\frac{\alpha+\beta}{2}$, find y by substituting x into $f(x)$
$y=a x^{2}+b x+c$ Form
y -intercept is the c
x-intercept are the factors, PlySmlt
vertex and axis of symmetry:
$x=-\frac{b}{2 a}$
Vertex is the max or min of the graph.

TI-84 Plus

3 A hairdresser has 13 small and 14 large cans of hairspray, giving a total of 9 L of hairspray. At this time last year she had 4 small and 12 large cans, totalling 6 L of hairspray. How much spray is in each size can?

4 A violinist is learning a waltz and a sonatina. One day she practices for 33 minutes by playing the waltz 4 times and the sonatina 3 times. The next day she plays the waltz 6 times and the sonatina only once, for a total of 25 minutes. Determine the length of each piece.

The solution is $x=12, y=7$.
So, an adult's ticket costs $\$ 12$ and a child's ticket costs $\$ 7$.

For each of the following, find the equation of the axis of symmetry:

b

For each of the following functions:
i find the axes intercepts
ii find the equation of the axis of symmetry
iiii find the coordinates of the vertex
iv sketch the function, showing all important features
v state the domain and range of the function.
a $y=x^{2}-4 x+3$
b $\quad y=-(x+2)(x-6)$

Cumulative Frequency Graphs

A percentile is the score below which a certain percentage of the data lies.

- the 85 th percentile is the score below which 85% of the data lies
- If your score in a test is the 95 th percentile, then 95% of the class have scored less than you.

Cumulative frequency graph

5 The following cumulative frequency graph displays the performance of 80 competitors in cross-country race.

Find:
a the lower quartile time
b the median
c the upper quartile
d the interquartile range
e an estimate of the 40th percentile.

5 This cumulative frequency curve shows the times taken for 200 students to travel to school by bus.
a Estimate how many of the students spent between 10 and 20 minutes travelling to school
b 30% of the students spent more than m minutes travelling to school. Estimate the value of m.

Box and Whisker Plots

- the minimum value
- the lower quartile $\left(\mathrm{Q}_{1}\right)$
- the median $\left(\mathrm{Q}_{2}\right)$

These five numbers form the five-number summary of the data set.

- the upper quartile $\left(\mathrm{Q}_{3}\right)$
- the maximum value

minimum $=3$

$\mathrm{Q}_{1}=13$
median $=20$
$\mathrm{Q}_{3}=29$
maximum $=42$

8 Consider this set of data:

$$
19,7,22,15,14,10,8,28,14,18,31,13,18,19,11,3,15,16,19,14
$$

a Find the 5 -number summary for the data. b Find the range and IQR of the data.
c Draw a boxplot of the data set.
33 The ages in months of 20 students are:
198, 192, 195, 194, 205, 208, 210, 200, 206, 203, 196, 198, 196, 201, 194, 198, 197, 195, 209, 204.
a Find the:
i median
ii range
iii interquartile range of the data.

6 Draw a box and whisker plot for the ages of the students.

108 Margaret picked some mandarins from a tree, and counted the number of seeds in each. Her results are shown in the boxplot below.

Find the:
a median
b interquartile range
c range of the data

Calculus

Derivatives find gradients.
Rewrite denominators as
numerators.
Tangents

1. Find y by using $f(x)$. Need (x, y)
2. Find $f^{\prime}(x)$.
3. Find m using $f^{\prime}(x)$
4. Find b using $(x, y), m$ and $y=m x+b$
Normals
Same as above but switch m to its opposite reciprocal and continue.

Find the equation of the tangent to:
a $y=x^{2}$ at $x=4$
c $y=3 x^{-1}$ at $x=-1$
b $y=x^{3}$ at $x=-2$
d $y=\frac{4}{x^{3}} \quad$ at $\quad x=2$

Optimisation

Steps

1. Create a formula to be optimized- single term(x) Write any restrictions
2. Take $1^{\text {st }}$ derivative $=$ zero

10 Sam has a sheet of metal which is 36 cm by 36 cm square He will cut out identical squares which are $x \mathrm{~cm}$ by $x \mathrm{~cm}$ from the corners of the sheet. He will then bend the sheet along the dashed lines to form an open container.
a Show that the capacity of the container is given by $V(x)=x(36-2 x)^{2} \mathrm{~cm}^{3}$
b What sized squares should be cut out to produce the container of greatest capacity?

Mean, Median and Standard Deviation

STANDARD DEVIATION FOR GROUPED DATA

Example 18

Calculate the standard deviation of the data set: $2,5,4,6,7,5,6$.

For continuous data, or data that has been grouped in classes, we use the mid-interval values to represent all data in that interval.

Example 19		
Use technology to estimate the standard deviation for this distribution of examination Mark	Frequency	
	$0-9$	1
scores:	$10-19$	1
	$20-29$	2
	$30-39$	4
	$40-49$	11

In order to estimate the standard deviation of already grouped data, the mid-interval values are used to represent all data in that interval.
We then use technology to estimate the standard deviation.

Class interval	Mid-interval value	Frequency	Class interval	Mid-interval value	Frequency
$0-9$	4.5	1			
$50-59$	54.5	16			
$10-19$	14.5	1	$60-69$	64.5	24
$20-29$	24.5	2			
$70-79$	74.5	13			
$30-39$	34.5	4			
$40-49$	44.5	11	$80-89$	84.5	6
$90-99$	94.5	2			

5 The weekly wages (in dollars) of 200 steel workers are given alongside.
stimate the mean and the standard deviation of the data

[^0][^1]
Normal Distribution

$X \sim N\left(\mu, \sigma^{2}\right)$ means normal distribution with a mean of μ And standard deviation of σ.

Example 2

[D) Self Tutor
If $\quad X \sim \mathrm{~N}\left(10,2.3^{2}\right), \quad$ find these probabilities:
a $\mathrm{P}(8 \leqslant X \leqslant 11) \quad$ b $\mathrm{P}(X \leqslant 12)$
c $\mathrm{P}(X>9)$. Illustrate your results.
b Using a TI-84 Plus:
Press 2nd VARS (DISTR) 2 : normalcdf (:

$\mathrm{P}(X \leqslant 12) \approx 0.808$

Example 4

If $X \sim \mathrm{~N}\left(23.6,3.1^{2}\right)$, find k for which $\mathrm{P}(X<k)=0.95$.

TI-84 Plus

invHorm $0.95,23$. 6.3.1)

Let X denote the final examination result, so $\quad X \sim \mathrm{~N}\left(62,12^{2}\right)$.

$$
\text { We need to find } k \text { such that } \quad \mathrm{P}(X \geqslant k)=0.8
$$

$$
\mathrm{P}(X \leqslant k)=0.2
$$

4 Given that $X \sim \mathrm{~N}\left(23,5^{2}\right)$, find a such that:
a $\mathrm{P}(X<a)=0.378$
b $\mathrm{P}(X \geqslant a)=0.592$
c $\mathrm{P}(23-a<X<23+a)=0.427$

THE χ^{2} TEST OF INDEPENDENCE

The hair and eye colours of 150 randomly selected individuals are shown in the table below. Hair colour

Eye colour		Blond	Black	Brunette	Red
	Blue	14	10	21	5
	Brown	11	32	20	12
	Green	5	2	14	4

At a 5% significance level, the critical value for χ^{2} is 12.59 .
Test, at a 5% level, whether there is an association between hair colour and eye colour

1. Write the null hypothesis.
2. Write the alternative hypothesis.
3. Find the χ^{2} calculated value.
4. Do you reject or not reject the null hypothesis?

xz-Test
$x 己=217030178$ $\mathrm{F}=.6413122738$ $\mathrm{df}=1$

Step 1: State H_{0} called the null hypothesis. This is a statement that the two variables being considered are independent.
State H_{1} called the alternative hypothesis. This is a statement that the two variables being considered are not independent.
Step 2: State the rejection inequality $\chi_{\text {calc }}^{2}>k$ where k is the critical value of χ^{2}.
Step 3: Construct the expected frequency table.
Step 4: Use technology to find $\chi_{\text {calc }}^{2}$.
Step 5: We either reject H_{0} or do not reject H_{0}, depending on the result of the rejection inequality.
Step 6: We could also use a p-value to help us with our decision making.
For example, at a 5% significance level: If $p<0.05$, we reject H_{0}.
If $p>0.05$, we do not reject H_{0}.

Currency Conversions

A banker changes South African rand to other currencies at a fixed commission of 1.5%. Wendy
wishes to convert 800 ZAR to Russian rubles where 1 ZAR buys 3.75 RUB.
a What commission is charged?
b How much does Wendy receive?
a $\begin{aligned} \text { Commission } & =800 \mathrm{ZAR} \times 1.5 \% \\ & =800 \times 0.015 \mathrm{ZAR}\end{aligned}$
b Wendy receives 788×3.75 rubles
$=12$ ZAR

Always find the commission and subtract it off before you convert to another currency.

1 A bank exchanges GBP for a commission of 1.5%. For the following transactions, calculate:
i the commission charged ii how much the customer receives.
a 500 GBP is converted to US dollars where 1 GBP buys 1.5616 USD.
b 350 GBP is converted to euros where 1 GBP buys $€ 1.1605$.
c 1200 GBP is converted to New Zealand dollars where 1 GBP buys $\$ 2.0954$ NZ.

Right Triangle Trigonometry

ANGLES OF ELEVATION AND DEPRESSION

The angle between the horizontal and
your line of sight to an object is called
the angle of elevation if you are looking you are looking downwards.

1 When measured from a point 9.32 m from its base, the angle of elevation to the top of a flagpole is 63°. Find the height of the flagpole.

5
a Find the angle of elevation to the top of a 56 m high building from point A , which is 113 m from its base.
b What is the angle of depression from the top of the building to A ?

Non-right Triangle Trigonometry Lesson 15I

46 The diagram shows the plan of a triangular garden bed. The garden bed will be enclosed by a 50 cm high wall and then filled with soil.
a Calculate the length BC .
b Calculate the area of the garden bed.
c Find the volume of soil needed to fill the garden bed.

The figure shows two adjacent triangular fields ABC and $\mathrm{ACD} . \mathrm{AD}=30 \mathrm{~m}, \mathrm{CD}=80 \mathrm{~m}, \mathrm{BC}=75 \mathrm{~m}$, $\widehat{A D C}=60^{\circ}$, and $\widehat{B A C}=60^{\circ}$.
a Calculate the length of AC .
b Calculate the size of ABC .
c Find the total area of the fields. 03

3-D Trigonometry Lesson 15D

39 The diagram shows a cuboid which measures 22.5 cm by 30 cm by 40 cm .
a Find the length of AC.
b Find the area of the plane ACGE
c Find the volume of the triangular prism ACGEFB
d Find the length of CE
e Find $\mathrm{A} \widehat{C} E$.
f Let M be the midpoint of CE. Find the area of triangle AMC.

52 A yachting course is illustrated in th diagram alongside. The yachts start and finish at O, and travel in the direction indicated.
a Find the distance from O to B in a straight line.
b Find BÔC
c Find the length of OC.
d Calculate the area enclosed by the course OABC.

e The course designer stated the length of the course is 30 km . Calculate the percentage error in this approximation.

5 For the rectangular prism shown, find the angle that:
a AH makes with HG
b DF makes with the base plane EFGH.

Answers

Box and Whisker Plots

Quadratic Functions

$$
\begin{array}{llll}
\text { a } x=3 & \text { b } x=-\frac{5}{2} & \text { c } x=1 \quad \text { d } x=-4
\end{array}
$$

Cumulative Frequency

Rounding and Percent Error

a $€ 2460$ ii 0.180% b i -467 people ii 1.48%
c i $\$ 1890$ ii 0.413% d i 189 cars ii 6.72%
a i -1.238 kg ii 19.8% b i 2.4 m ii 2.46%
c $\mathbf{i}-3.8 \mathrm{~L}$ ii 16.0% d i -22 hours ii 30.6%

Normal Distribution

3 a 0.24
b 0.798
0.205
d
0.427
e 0.0859
0.457
4 a 21.4
b 21.8
c 2.82

Calculus

1 a $y=8 x-16 \quad$ b $y=12 x+16 \quad$ c $y=-3 x-6$
d $y=-\frac{3}{4} x+2 \quad$ e $y=7 x-5 \quad$ f $y=-3 x-5$
10. 6 cm by 6 cm

Linear Equations

3 Small can $=240 \mathrm{~mL}$, Large can $=420 \mathrm{~mL}$
4 Waltz $=3$ minutes, Sonatina $=7$ minutes

Mean, Median and Standard Deviation

3 mean $\approx 1.69 \mathrm{~kg}$, standard deviation $\approx 0.182 \mathrm{~kg}$

| 39 | a 37.5 cm | b $1500 \mathrm{~cm}^{2}$ | c $13500 \mathrm{~cm}^{3}$ |
| :---: | :---: | :---: | :---: | :---: |
| d 54.8 cm | e 46.8° | | f $375 \mathrm{~cm}^{2}$ |

```
5 a }\overline{x}=1.01\textrm{kg};s=0.17\quad\mathrm{ b }\overline{x}=2.02\textrm{kg};s=0.3
    c Doubling the values doubles the mean and standard deviation.
4 \overline{x}\approx48.3\textrm{cm},\mp@subsup{s}{n}{}\approx2.66\textrm{cm}\quad5\quad\overline{x}\approx$390.30,\mp@subsup{s}{n}{}\approx$15.87
```


3-D Trigonometry

$5 \quad \bar{x}=1.01 \mathrm{~kg} ; s=0.17 \quad$ b $\bar{x}=2.02 \mathrm{~kg} ; s=0.34$
c Doubling the values doubles the mean and standard deviation.
$4 \bar{x} \approx 48.3 \mathrm{~cm}, s_{n} \approx 2.66 \mathrm{~cm} \quad 5 \quad \bar{x} \approx \$ 390.30, s_{n} \approx \$ 15.87$

Non-right Triangle Trigonometry

1. 18.3 m
2. a. 26.4
b. 26.4°

Right Triangle Trigonometry

$$
\begin{aligned}
& \text { i } x \text {-intercepts: } \\
& -2 \text { and } 6 \\
& \text { ii } \begin{array}{l}
y \text {-intercept: } 12 \\
x=2
\end{array} \\
& \text { ii }(2,16)
\end{aligned}
$$

v Domain $=\{x \mid x \in \mathbb{R}\}$, Range $=\{y \mid y \leqslant 16\}$

Currency Conversions

1 a i 7.50 GBP
i 769.09 USD
c it 18 GBP
ii $\$ 2476.76 \mathrm{NZ}$
a 27 min
b 29 min
c 31.3 min

5 a 88 students
b $m=24$

$$
\chi^{2}-\text { Test }
$$

Eye color is independent of hair color.
Eye color is not independent of hair color.

$$
\chi^{2}=18.4
$$

4. We reject the null hypothesis. Eye color is not independent of hair color.

[^0]: The leng
 obtained:

 | Length (cm) | $[40,42)$ | $[42,44)$ | $[44,46)$ | $[46,48)$ | $[48,50)$ | $[50,52)$ | $[52,54)$ |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Frequency | 1 | 1 | 3 | 7 | 11 | 5 | 2 |

[^1]: Estimate the mean length and the standard deviation of the lengths.

