Rounding and Percent Error

ROUNDING OFF TO SIGNIFICANT FIGURES

To round off to n significant figures, we look at the (n+1)th digit.

- If it is 0, 1, 2, 3 or 4 we do not change the nth digit.
- If it is 5, 6, 7, 8 or 9 we increase the nth digit by 1.

We delete all digits after the nth digit, replacing by 0s if necessary.

Round: a 7.182 to 2 significant figures c 423 to 1 significant figure d 4.057 to 3 significant figures.

a 7.182 \approx 7.2 (2 s.f.)

This is the 2nd significant figure, so we look at the next digit which is 8. The 8 tells us to round the 1 up to a 2 and leave off the remaining digits.

b $0.00132 \approx 0.0013$ (2 s.f.)

These zeros at the front are place holders and so must stay. The first significant figure is the 1. The third significant figure, 2, tells us to leave the 3 as it is and leave off the remaining digits.

2 Write correct to 3 significant figures:

a	43620	b	10076	C	$0.\overline{6}$	d	0.036821	9	0.3186
f	0.7196	9	$0.\overline{63}$	h	0.06371	i	18.997	j	256800

3 Write correct to 4 significant figures:

a	28.0392	b	0.005362	c	23683.9	d	42366709
e	0.038792	f	0.0063779	g	0.0008999	h	43.076321

Percentage error
$$E=rac{|V_A-V_E|}{V_E} imes 100\%$$

Example 20	→ Self Tutor
You estimate a fence's length to be Find, correct to one decimal place:	70 m whereas its true length is 78.3 m.
a the error	b the percentage error.
a error $=V_A-V_E$	b percentage error
= 70 - 78.3 = -8.3 m	$=\frac{ V_A-V_E }{V_E}\times 100\%$
	$= \frac{ -8.3 }{78.3} \times 100\%$
	pprox 10.6%

- 1 Find i the error ii the percentage error in rounding:
 - a the yearly profit of €1 367 540 made by a company to €1.37 million
 - **b** a population of 31 467 people to 31 000 people
 - c a retail sales figure of \$458110 to \$460000
 - d the number of new cars sold by a company in a year from 2811 to 3000.
- 2 Find i the error ii the percentage error if you estimate:
 - a the mass of a brick to be 5 kg when its actual mass is 6.238 kg
 - **b** the perimeter of a property to be 100 m when its actual length is 97.6 m
 - the capacity of a container to be 20 L when its actual capacity is 23.8 L
 - d the time to write a computer program to be 50 hours when it actually takes 72 hours.

Linear Equations

Two unknowns mean two equations. Write two equations and solve using PlySmlt.

TI-84 Plus

- SOLUTION

 ×1 812

 ×2 = 7

 (HAIN)HODENSYSHY STONE 4FO)
- 3 A hairdresser has 13 small and 14 large cans of hairspray, giving a total of 9 L of hairspray. At this time last year she had 4 small and 12 large cans, totalling 6 L of hairspray. How much spray is in each size can?
- 4 A violinist is learning a waltz and a sonatina. One day she practices for 33 minutes by playing the waltz 4 times and the sonatina 3 times. The next day she plays the waltz 6 times and the sonatina only once, for a total of 25 minutes. Determine the length of each piece.

The solution is x = 12, y = 7.

So, an adult's ticket costs \$12 and a child's ticket costs \$7.

Quadratics

Factorised Form
$$y = a(x - \alpha)(x - \beta)$$

 α and β are the x-intercepts
Y-intercept = $a(\alpha)(\beta)$

Vertex:
$$x = \frac{\alpha + \beta}{2}$$
, find y by substituting x into f(x)

 $y = ax^2 + bx + c$ Form y-intercept is the c x-intercept are the factors, PlySmlt vertex and axis of symmetry:

$$\chi = -\frac{b}{2a}$$

Vertex is the max or min of the graph.

For each of the following, find the equation of the axis of symmetry:

For each of the following functions:

- i find the axes intercepts
- ii find the equation of the axis of symmetry
- iii find the coordinates of the vertex
- iv sketch the function, showing all important features
- v state the domain and range of the function.

$$y = x^2 - 4x + 3$$

b
$$y = -(x+2)(x-6)$$

Cumulative Frequency Graphs

A **percentile** is the score below which a certain percentage of the data lies.

- the 85th percentile is the score below which 85% of the data lies.
- If your score in a test is the 95th percentile, then 95% of the class have scored less than you.

5 The following cumulative frequency graph displays the performance of 80 competitors in a cross-country race.

30

Find:

- a the lower quartile time
- **b** the median
- the upper quartile
- d the interquartile range
- e an estimate of the 40th percentile.

5 This cumulative frequency curve shows the times taken for 200 students to travel to school by bus.

25

- **a** Estimate how many of the students spent between 10 and 20 minutes travelling to school.
- **b** 30% of the students spent more than m minutes travelling to school. Estimate the value of m.

time (min)

35

Box and Whisker Plots

- the minimum value
- the lower quartile (Q_1)
- the median (Q_2)
- the upper quartile (Q_3)
- the maximum value

These five numbers form the **five-number summary** of the data set.

8 Consider this set of data:

- **a** Find the 5-number summary for the data. **b** Find the range and IQR of the data.
- Draw a boxplot of the data set.
- 33 The ages in months of 20 students are:

- a Find the:
 - median
- ii range

- iii interquartile range of the data.
- **b** Draw a box and whisker plot for the ages of the students.
- 108 Margaret picked some mandarins from a tree, and counted the number of seeds in each. Her results are shown in the boxplot below.

Find the:

a median

- **b** interquartile range
- c range of the data.

Calculus

Derivatives find gradients. Rewrite denominators as numerators.

Tangents

- 1. Find y by using f(x). Need (x, y)
- 2. Find f'(x).
- 3. Find m using f'(x)
- 4. Find b using (x, y), m and y=mx+b

Normals

Same as above but switch m to its opposite reciprocal and continue.

Find the equation of the tangent to:

a
$$y = x^2$$
 at $x = 4$

$$y = 3x^{-1}$$
 at $x = -1$

b
$$y = x^3$$
 at $x = -2$

d
$$y = \frac{4}{x^3}$$
 at $x = 2$

Optimisation

Steps

- Create a formula to be optimized single term(x)
 Write any restrictions
- 2. Take 1st derivative = zero
- 10 Sam has a sheet of metal which is 36 cm by 36 cm square. He will cut out identical squares which are x cm by x cm from the corners of the sheet. He will then bend the sheet along the dashed lines to form an open container.
 - **a** Show that the capacity of the container is given by $V(x) = x(36-2x)^2 \text{ cm}^3$.
 - **b** What sized squares should be cut out to produce the container of greatest capacity?

Mean, Median and Standard Deviation

Example 18

Calculate the standard deviation of the data set: 2, 5, 4, 6, 7, 5, 6.

TI-84 Plus -Var Stats

- 3 The weights of a group of cooking chickens in kilograms are: 1.5, 1.8, 1.7, 1.4, 1.7, 1.8, 2.0, 1.5, 1.6, 1.6, 1.9, 1.7, 1.4, 1.7, 1.8, 2.0 Use technology to find the mean and standard deviation of weights.
- 5 The weights of ten young turkeys to the nearest 0.1 kg are: 0.8, 1.1, 1.2, 0.9, 1.2, 1.2, 0.9, 0.7, 1.0, 1.1
 - **a** Find the mean and standard deviation for the weights of the turkeys.
 - **b** After being fed a special diet for one month, the weights of the turkeys doubled. Find the new mean and standard deviation.
 - Comment on your results.

STANDARD DEVIATION FOR GROUPED DATA

For continuous data, or data that has been grouped in classes, we use the mid-interval values to represent all data in that interval.

■ Self Tutor

TI-84 Plus

-Var Stats X=59<u>.</u>75

Example 19

Use technology to estimate the standard deviation for this distribution of examination

Mark	Frequency	Mark	Frequency	
0 - 9	1	50 - 59	16	
10 - 19	1	60 - 69	24	
20 - 29	2	70 - 79	13	
30 - 39	4	80 - 89	6	
40 - 49	11	90 - 99	2	

In order to estimate the standard deviation of already grouped data, the mid-interval values are used to represent all data in that interval

We then use technology to estimate the standard deviation

Class interval	Mid-interval value	Frequency	Class interval	Mid-interval value	Frequency
0 - 9	4.5	1	50 - 59	54.5	16
10 - 19	14.5	1	60 - 69	64.5	24
20 - 29	24.5	2	70 - 79	74.5	13
30 - 39	34.5	4	80 - 89	84.5	6
40 - 49	44.5	11	90 - 99	94.5	2

5 The weekly wages (in dollars) of 200 steel workers are given alongside.

Estimate the mean and the standard deviation of the data.

Wage (\$)	Number of workers
360 - 369.99	17
370 - 379.99	38
380 - 389.99	47
390 - 399.99	57
400 - 409.99	18
410 - 419.99	10
420 - 429.99	10
430 - 439.99	3

4 The lengths of 30 randomly selected 12-day old babies were measured and the following data obtained:

Length (cm)	[40, 42)	[42, 44)	[44, 46)	[46, 48)	[48, 50)	[50, 52)	[52, 54)
Frequency	1	1	3	7	11	5	2

Estimate the mean length and the standard deviation of the lengths.

Normal Distribution

 $X \sim N(\mu, \sigma^2)$ means normal distribution with a mean of μ And standard deviation of σ .

Example 2

Self Tutor

If $X \sim N(10, 2.3^2)$, find these probabilities:

- **a** $P(8 \le X \le 11)$
 - **b** $P(X \le 12)$
- P(X > 9). Illustrate your results.

X is a random variable that is distributed normally with mean 32 and standard deviation 6. Find:

- a $P(25 \le X \le 30)$
- **b** P(X > 27)

• $P(22 \le X \le 28)$

d $P(X \le 30.9)$

P(X < 23.8)

P(22.1 < X < 32.1)

Example 4

If $X \sim N(23.6, 3.1^2)$, find k for which P(X < k) = 0.95.


```
Let X denote the final examination result, so X \sim N(62, 12^2).
We need to find k such that P(X \ge k) = 0.8
                              \therefore P(X \leqslant k) = 0.2
```

- 4 Given that $X \sim N(23, 5^2)$, find a such that:
 - **a** P(X < a) = 0.378 **b** $P(X \ge a) = 0.592$
- P(23 a < X < 23 + a) = 0.427

THE χ^2 TEST OF INDEPENDENCE

The hair and eye colours of 150 randomly selected individuals are shown in the table below.

*Hair colour**

		Blond	Black	Brunette	Red
r	Blue	14	10	21	5
Eye colour	Brown	11	32	20	12
colour	Green	5	2	14	4

At a 5% significance level, the critical value for χ^2 is 12.59.

Test, at a 5% level, whether there is an association between hair colour and eye colour.

- 1. Write the null hypothesis.
- 2. Write the alternative hypothesis.
- 3. Find the χ^2 calculated value.
- 4. Do you reject or not reject the null hypothesis?

- Step 1: State H_0 called the **null hypothesis**. This is a statement that the two variables being considered are independent.
 - State H_1 called the **alternative hypothesis**. This is a statement that the two variables being considered are not independent.
- Step 2: State the **rejection inequality** $\chi^2_{calc} > k$ where k is the **critical value** of χ^2 .
- Step 3: Construct the expected frequency table.
- Step 4: Use technology to find χ^2_{calc} .
- Step 5: We either reject H_0 or do not reject H_0 , depending on the result of the rejection inequality.
- Step 6: We could also use a **p-value** to help us with our decision making. For example, at a 5% significance level: If p < 0.05, we reject H_0 . If p > 0.05, we do not reject H_0 .

Currency Conversions

A banker changes South African rand to other currencies at a fixed commission of 1.5%. Wendy wishes to convert 800 ZAR to Russian rubles where 1 ZAR buys 3.75 RUB. a What commission is charged? b How much does Wendy receive? b Wendy receives 788 × 3.75 rubles = 800 × 0.015 ZAR = 2955 rubles = 12 ZAR

Always find the commission and subtract it off before you convert to another currency.

- 1 A bank exchanges GBP for a commission of 1.5%. For the following transactions, calculate:
 - the commission charged
- ii how much the customer receives.
- **a** 500 GBP is converted to US dollars where 1 GBP buys 1.5616 USD.
- **b** 350 GBP is converted to euros where 1 GBP buys €1.1605.
- 1200 GBP is converted to New Zealand dollars where 1 GBP buys \$2.0954 NZ.

Right Triangle Trigonometry

ANGLES OF ELEVATION AND DEPRESSION

The angle between the horizontal and your line of sight to an object is called the **angle of elevation** if you are looking upwards, or the **angle of depression** if you are looking downwards.

- 1 When measured from a point 9.32 m from its base, the angle of elevation to the top of a flagpole is 63°. Find the height of the flagpole.
- 5 a Find the angle of elevation to the top of a 56 m high building from point A, which is 113 m from its base.
 - **b** What is the angle of depression from the top of the building to A?

Non-right Triangle Trigonometry Lesson 151

- Time the coordinates of the vertex of the graph.
- 46 The diagram shows the plan of a triangular garden bed. The garden bed will be enclosed by a 50 cm high wall and then filled with soil.
 - a Calculate the length BC.
 - **b** Calculate the area of the garden bed.
 - Find the volume of soil needed to fill the garden bed.

103

The figure shows two adjacent triangular fields ABC and ACD. AD = 30 m, CD = 80 m, BC = 75 m, $\widehat{ADC} = 60^{\circ}$, and $\widehat{BAC} = 60^{\circ}$.

- a Calculate the length of AC.
- **b** Calculate the size of \widehat{ABC} .
- Find the total area of the fields.

- 52 A yachting course is illustrated in the diagram alongside. The yachts start and finish at O, and travel in the direction indicated.
 - **a** Find the distance from O to B in a straight line.
 - **b** Find BÔC.
 - Find the length of OC.
 - **d** Calculate the area enclosed by the course OABC.

• The course designer stated the length of the course is 30 km. Calculate the percentage error in this approximation.

3-D Trigonometry Lesson 15D

- 39 The diagram shows a cuboid which measures 22.5 cm by 30 cm by 40 cm.
 - a Find the length of AC.
 - **b** Find the area of the plane ACGE.
 - Find the volume of the triangular prism ACGEFB.
 - **d** Find the length of CE.
 - Find AĈE.
 - **f** Let M be the midpoint of CE. Find the area of triangle AMC.

- **5** For the rectangular prism shown, find the angle that:
 - **a** AH makes with HG
 - **b** DF makes with the base plane EFGH.

Answers

Box and Whisker Plots

108 a 9 seeds

b 7 seeds

c 15 seeds

Quadratic Functions

1 **a** x = 3

b $x = -\frac{5}{2}$

x=1

3 a i x-intercepts: 1 and 3 y-intercept: 3 x=2(2, -1)

V Domain = $\{x \mid x \in \mathbb{R}\}$, Range = $\{y \mid y \ge -1\}$

x-intercepts: -2 and 6

y-intercept: 12 x=2(2, 16)

V Domain = $\{x \mid x \in \mathbb{R}\}$, Range = $\{y \mid y \leq 16\}$

Rounding and Percent Error

2	a	43600	b	10100	c 0.	667	d	0.0368	e 0.319
	f	0.720	9	0.636	h 0.0	637	i	19.0	257 000
3	a	28.04	b	0.005 36	S 2 C	2368	80	d 423	70000
	e	0.03879		f 0.006	378	9 0.	000	8999	h 43.08

i €2460 ii 0.180% b i -467 people ii 1.48% i \$1890 ii 0.413% d i 189 cars ii 6.72% **2 a** i -1.238 kg ii 19.8% **b** i 2.4 m ii 2.46% **c** i -3.8 L ii 16.0% **d** i -22 hours ii 30.6%

Cumulative Frequency

b 29 min **c** 31.3 min **a** 27 min **d** 4.3 min $\approx 28 \text{ min}$

b m = 2488 students

$$\chi^2 - Test$$

- 1. Eye color is independent of hair color.
- 2. Eye color is not independent of hair color.
- 3. $\chi^2 = 18.4$
- 4. We reject the null hypothesis. Eye color is not independent of hair color.

Normal Distribution

c 0.205 **d** 0.427 **a** 0.248 **b** 0.798 \mathbf{f} 0.457 **c** 0.0859

b 21.8 21.4**c** 2.82

Calculus

1 **a** y = 8x - 16 **b** y = 12x + 16 **c** y = -3x - 6**d** $y = -\frac{3}{4}x + 2$ **e** y = 7x - 5y = -3x - 5

10. 6 cm by 6 cm

Linear Equations

- 3 Small can = 240 mL, Large can = 420 mL
- 4 Waltz = 3 minutes, Sonatina = 7 minutes

Mean, Median and Standard Deviation

- 3 mean ≈ 1.69 kg, standard deviation ≈ 0.182 kg
- 5 **a** $\overline{x} = 1.01 \text{ kg}$; s = 0.17 **b** $\overline{x} = 2.02 \text{ kg}$; s = 0.34• Doubling the values doubles the mean and standard deviation.
- 4 $\overline{x} \approx 48.3$ cm, $s_n \approx 2.66$ cm 5 $\overline{x} \approx \$390.30$, $s_n \approx \$15.87$

Currency Conversions

- 7.50 GBP
- 769.09 USD

ii €400.08

5.25 GBP

18 GBP

\$2476.76 NZ

Right Triangle Trigonometry

1. 18.3 m 5. a. 26.4° b. 26.4°

Non-right Triangle Trigonometry

c 0.567%

b 1220 m^2 609 m^3 **46 a** 89.7 m **103 a** 70 m **b** 53.9° 3440 m^2

52 a 13.1 km **b** 41.4° • 4.83 km $d 38.3 \text{ km}^2$

3-D Trigonometry

39 a 37.5 cm $b 1500 \text{ cm}^2$ c 13500 cm³ d 54.8 cm € 46.8° $f 375 \text{ cm}^2$ a 90° 33.9°