The Basics

MANE NUM CPX PRB	Mini NUM CPX PRB
20 ▶ Frac	61fMin(
20 ▶ Dec	7:fMax(
30 3	9:fnInt(
40 3 J(9:fnInt(
50 × J	0:summation Σ(
60 fMin(A:lo9BASE(
7↓ fMax(B:Solver
MATH <u>NUM</u> CPX PRB	MATH <u>RUM</u> CPX PRB
NHabs(8↑lcm(
2:round(9:9cd(
3:iPart(0:remainder(
4:fPart(A:⊧n/d∢⊧Un/d
5:int(B:⊧F∢⊧D
6:min(C:Un/d
7↓max(L: n/d
MATH NUM CPX 18	MATH NUM CPX 1985
1 0 rand	21nPr
2:nPr	3:nCr
3:nCr	4:!
4:!	5:randInt(
5:randInt(6:randNorm(
6:randNorm(6:randBin(
7↓randBin(8:randBin(

These are all the operations that can be accessed from the MATH button. This is where you will ask the output to be a fraction or take a radical of something with an index other than 2 or 3. NOTES

Helpful Little Time Savers

- 2nd (-) : recalls the previous answer
- 2nd ENTER: recalls the previous entry
- STO> : store a value as a variable
- EE: use this for scientific notation
- 2nd +: access the memory of your calculator to clear lists and reset your settings.

- 2nd 0: access the catalog of all operations the calculator can do.
- Use the X,T, θ, n button to input the variable x.
- If you get an answer that looks like this: 1.23E-10, then the answer is in scientific notation and should be written like this on your paper:

.000 000 000 123 or 1.23 x 10^{-10}

Graphing

©000 MEMORY 2:Zoom In 3:Zoom Out 4:ZDecimal 5:ZS9uare 6:ZStandard 7↓ZTri9 ©DDI MEMORY 5:ZSquare 6:ZStandard 7:ZTri9 8:ZInte9er 9:ZoomStat 0↓ZoomFit

Notes:

ZBOX is great for creating a "box" around the important part of the graph.

ZSTANDARD returns the window to the

standard window.

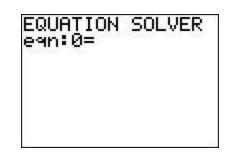
ΞĒ	LCUL	i i i e	
1 :		le	
	zęro		
	mini		
	maxi		15
2:	inte du Za	rsect	
9:	0920	N Alexandre	
1.1	JTVX	.7ux	

One of the most amazing inventions of modern man, the Calculate menu.

Value: find a specific y value associated with a specified x. Zero: finds where the graph equals zero, x-intercepts. Minimum: finds the smallest value over a chosen interval. Maximum: find the largest value over a chosen interval. Intersect: find where two graphs intersect. dy/dx: finds the value of the tangent at a given x-value. $\int f(x)dx$: finds the value of a definite integral.

Table

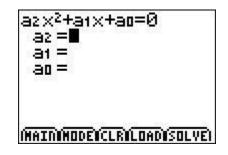
- Don't underestimate the value of the table that is associated with your graph.
- It can help you find limits.
- It can help you find a specific term in a sequence.



Choose where you want the table to start with TblStart. Set the change of increments with ΔTbl

Notes			
. <u> </u>	 	 	
· · · · · · · · · · · · ·	 		

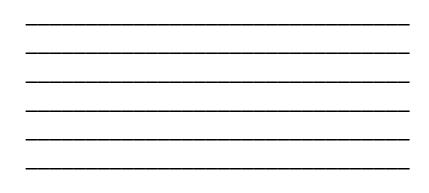
Helpful Solving Tools


- Solver...
- This is found by pressing the MATH button and arrowing up once.
- This is great for solving equations you don't have the algebra skills to solve. It must be set equal to zero.
- Enter in the equation and press ENTER.
- Cursor needs to be on the X= and press ALPHA ENTER

PolySmlt 2: One of the most amazing APPS ever.

- This will solve two types of problems.
- Higher order polynomials
- Simultaneous Linear Equations.
- Press APPS and then use ALPHA 8 to get to the P's quickly. Choose PolySmlt.
- Poly Root Finder solves polynomials. Use this instead of Solver... because of the possibility of more than one answer.

ORDER	1001 FLINDER HODE 10345678910
REAL	a+bi re^(8i)
DEC	FRAC
NORMAL	SCI ENG
FLOAT	0123456789
RADIAN	DEGREE
MAIN	INELPINEXT

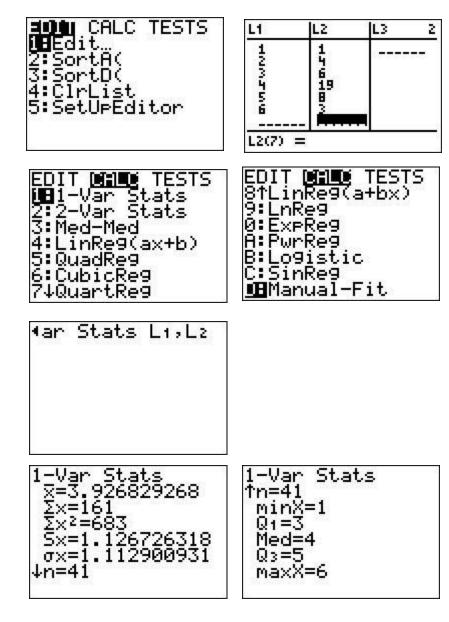


PolySmlt 2 s'more

- Simultaneous Equations can be solved using choice 2 in the menu.
- Make sure that your equations have the variables in the same order.
- This only works for linear equations, nothing with an exponent greater than 1.

SIMULT EQN SOLVER MODE	SYSTEM NAT
EQUATIONS 345678910	0
UNKNOWNS 0345678910	CO Ó
DEC FRAC	
MURIAL SCI ENG	
0123456789	1998 - 1998 - 19 <u>9</u> 8
RADIAN DECISES	(1,4)=0
(MAIN) (HELPINEXT)	MAINIMODENC

	0]]	
(1,1) (MAIN		CLRILI	IADVSD	

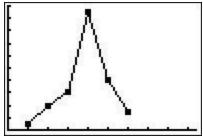

Finance

- This is found in APPS.
- It will calculate missing information involved in a compound interest or depreciation problem.
 - Use TVM Solver

After you have entered in the known information then position the cursor over what you are trying to solve for and press ALPHA ENTER.

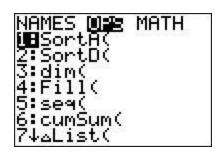
N=I	
I%=0	
PV=0 PMT=0	
FV=0	
PŽΥ≚1	
C/Y=1	
PMT : E	BEGIN

Statistics


The STAT button is an excellent way to generate statistical information about a set of data.

You first need to enter data into the lists using the EDIT menu. L_1 is for the actual data values. L_2 is utilized if the data is grouped. It contains the frequency of each data value. **If I don't group the data, then L_2 is unnecessary.

When you finish entering in your data remember to return to the Home Screen. You can accidentally do the math in your lists otherwise. Notice that I chose 1-VAR Stats and then listed L_1 and L_2 . I had to do this because the data is grouped and I need to let the GDC know to work with both lists.


Statistical Plots

Press 2nd Y= and you will get into the Statistical Plots. You have to it on in order for it to show on the graph.

Remember to turn it off when you want to return to the normal graph mode. How to turn it off: 1. go back to 2nd Y= and select off 2. go to Y= and arrow up to highlighted Plot and press enter. This should remove the highlight it and turn it off.

NAMES OPS	
2:max(3:mean(
4:median(5:sum(
6∶prod(7↓stdDev(

	MES Max		
3:	mear		
5:	SUM Pro	(
7:	std	Dev(_ /
85	var	iance	57

Lists: 2nd STAT

 This is a handy menu to know about. Once you have data entered into a list you can do many operations with it.

Distribution: 2nd VARS

 This will find binomial pdf and cdf or normal pdf and cdf or even Poisson pdf and cdf.

DISMS DRAW	DENS DRAW
IEnormaledf(01Fcdf(
2:normalcdf(A:binomedf)
3:invNorm(B:binomedf)
4:invT(C:poissonpo
5:tedf(D:poissonco
5.tcdf(E:9eometrd
7↓X²₽df(E:9eometrd

Notes:			
		 ,	